
1

Task-Invariant Agent using Model Dynamics
Gene Chung∗, Alfred Cueva†, Taehong Kim‡, Sumin Ye†

∗Department of Mechanical Engineering, Seoul National University, Seoul, Korea Email: piggene00,
alfred11@snu.ac.kr, kimtaehong07, ysm3868@snu.ac.kr

Abstract—In this study, we introduce the Task Invariant Agent
(TIA) network that aims to enable agents to efficiently adapt
and perform across a diverse set of tasks. Our proposed model
incorporates a unique task abstraction process, allowing the
network to quickly generate meaningful task representations that
serve as essential inputs for decision-making. We plan to assess
the TIA network in different task variations of the CartPole
environment, where the agent’s objective is to perform well on
broad of tasks. We expect that the TIA network will not only
perform well on tasks it has been trained on, but also rapidly
adapt to new, previously unseen tasks.

I. INTRODUCTION

Over the years, artificial intelligence has made significant
advancements, with some algorithms demonstrating practical
performance that rivals or surpasses human intelligence, espe-
cially in domains like reinforcement learning [1]. Also recent
research has even proposed a promising approach of develop-
ing modular policies for multi-task and multi-robot systems
[2] [3]. This approach combines reinforcement learning and
neural networks to train a low-level control policy that can be
reused across different tasks and robots. The high-level task-
specific policy is then learned through reinforcement learning,
which selects and combines the appropriate low-level control
policies.

Although such method provides possibility and performance
for learning variety of tasks simultaneously, this model still
lacks in efficient probability of need to update weights or even
make a new network every time new tasks are added to situa-
tion. In this research, we propose Task Invariant Agent (TIA)
network, which shares weight through variety of tasks and
could also perform well on new untrained tasks. The objective
of this network is to develop an agent that can perform well
across a range of tasks, similar to how humans can perform
diverse tasks with ease. By using model abstraction that will
be discussed at related works and considering it as an input
of policy, the proposed task invariant policy network aims to
create a more robust and adaptable agent that can quickly learn
new tasks and generalize to different environments.

In this study, we propose the (TIA) network, an innovative
approach to multi-task reinforcement learning. We plan to test
this network in the cart-pole balancing environment, where the
agent’s tasks will range from maintaining balance at a desired
position. We anticipate that the TIA network will exhibit robust
performance across known tasks and swiftly adapt to new
ones.

II. RELATED WORKS

The idea of network which could be applied in to variant
tasks isn’t really new area of research. This section provides

quick summary of each research’s main ideas with achieve-
ments and limitations. Also, representing a model feature
through latent vector, and using it as a input of policy network
is also covered through variety of researches [4] [5] [6].

A. HDQN
Hierarchical Deep Reinforcement Learning (HDQN) [7] is

a variant of the popular reinforcement learning technique that
enables agents to learn and solve complex tasks by breaking
them down into smaller subtasks, or subgoals. HDQN involves
the use of multiple interconnected deep neural networks, with
each network responsible for learning and solving a specific
subgoal. This article gave the idea of learning multiple tasks,
but still which was sub-task for ultimate goal task.

B. World Models
The“World Models” article by David Ha and Jürgen

Schmidhuber [4] proposes a novel approach to reinforcement
learning by using a combination of three different components:
a vision module, a memory module, and a controller module.

Vision module extracts feature vector from given ob-
servation(image data) using VAE(Variational Auto Encoder)
Network, and combining this with memory module which
combined RNN and MDN (Mixture Density Network) [8] to
successfully predict future state from given action and state
estimation. By using hidden state vector of RNN, control
module also possess information of model, enabling policy
network to consider such information.

This research gives intuition of applying model’s informa-
tion as an input of policy network, but still suffers from its
complex structure, and also not quite applicable for variant
kinds of tasks.

C. Rapid Motor Adaptation
”Rapid Motor Adaptation” [6] enables legged robot to

quickly adapt and perform well on unknown terrain and
physics. Only by experiencing several minutes of new en-
vironment with unknown physics, this paper succeed for
legged robot to quickly perform walking. This research shares
fundamental idea of optimizing latent vector to rapidly adapt
for unknown environment rather than updating weights of
network, which is way more efficient in the matter of time.

Method used in this research is to quickly estimate latent
vector representing of model’s dynamics such as joint-friction,
rigid body mass etc, from sequence of state and action pairs
received from short experience. By using this latent represen-
tation of model’s dynamics as an input to a policy network,
robot could perform well through variety of terrains and could
also perform well on untrained new environment.

2

D. DeepMPC

”DeepMPC: Learning Deep Latent Features for Model
Predictive Control” [9] is a research paper that introduces a
deep learning-based approach for enhancing the performance
of model predictive control (MPC) by learning deep latent
features.

The paper proposes a novel framework that combines deep
neural networks and MPC to learn latent representations
of system dynamics directly from data. By leveraging the
expressive power of deep neural networks, DeepMPC aims
to capture complex and nonlinear relationships in the system
dynamics, allowing for more accurate predictions and control
actions.

The key idea behind DeepMPC is to learn a latent space
representation that captures the essential features of the system
dynamics. This is achieved by training an autoencoder, which
is a type of neural network architecture that learns to encode
the input data into a lower-dimensional latent space and
decode it back to the original space. The encoder part of
the autoencoder learns to extract meaningful features from the
input data, while the decoder part reconstructs the input from
the learned latent representation.

E. Sequence to Sequence Learning with Neural Networks

Seq2Seq (Sequence-to-Sequence) [10] models are a type
of neural network architecture widely used for various natural
language processing (NLP) tasks, such as machine translation,
text summarization, and conversational agents. This article
provides a summary of the key concepts and applications of
Seq2Seq models.

Seq2Seq models consist of two main components: an en-
coder and a decoder. The encoder processes an input sequence,
such as a sentence, and transforms it into a fixed-length vector
called the ”context vector” or ”thought vector.” This vector
is designed to capture the semantic meaning of the input
sequence. The decoder takes this context vector and generates
an output sequence, often of a different length or in a different
language, based on the learned representation.

III. TASK INVARIANT POLICY NETWORK

We propose TIA network, providing policy Network that
could perform well through variant of tasks and also for
unknown tasks with quick adaptation as [6] with experiencing
several minutes with new environment. Algorithm of our re-
search is composed with 3 main networks of Model Predictor,
Encoder, And main policy network, which is modification of
DQN [11]. Our algorithm uses latent vector representation of
task z, which will be used as an input of policy’s network.
Training stage of TIA network needs to make good policy
network but also need to learn how to represent the task as a
vector.

A. Structure of Networks

• Policy Network is modification of DQN network. Input
of this network will be state vector at given time st and
latent vector of model estimation z. So action of given

Model
Predictor

Environment

𝑧

(𝑠𝑡−𝑚, 𝑎𝑡−𝑚, 𝑟𝑡−𝑚)

(𝑠𝑡−1, 𝑎𝑡−1, 𝑟𝑡−1)

𝑧𝑡

𝑠𝑡

DQN 𝑎𝑡

Encoder

(𝑠𝑡+1, 𝑟𝑡)
𝑧

𝑠𝑡−1

𝑎𝑡−1 (𝑠𝑡 , 𝑟𝑡−1)

Fig. 1. Structure of TIA Network at training stage

time will be received as at = π(st, z). Actual Output of
this network will be estimated Q values of given state st,
task z and for possible actions which corresponds to each
node of output layer.

• Encoder network’s purpose is to generate model rep-
resentation from given sequences of experiences. Se-
quence of experiences τt contains recent m sequences
t − 1 to t − m of state, action and received ac-
tion pairs {(st−1, at−1, rt−1), ..., (st−m, at−m, rt−m)}.
Encoder will generate latent estimation of task as zt =
µ(τt). This encoder gets sequential data as an input like
seq2seq auto-encoder. [10] Since this latent estimation
zt would have high variation through time, using this
value directly as an model estimation z would be in-
appropriate. Thus we will accumulatively update latent
vector z = (1− α)z + αzt.

• Model Predictor Model Predictor is used to give valu-
able meaning to latent vector z. This model predictor
is also a robust Model Predictor that could be applied
to a variant of tasks. From past state and action pair
st−1, at−1 and latent estimation of task z, Model Predic-
tor ψ estimates next state, reward, and termination info
st, rt−1, tt = ψ(st−1, at−1, z).

B. Overall Algorithm

Main algorithm uses replay buffer conceived from DQN
[11]. Every step, choose random task agent expects latent
representation z calculated from Encoder from given history
sequence tau. With using this vector z and using it as an input
of DQN network, agent guesses optimal-action. With epsilon-
greedy action selecting process, between the optimal-action
and random action, agent choose action a. After applying
this action a, we observe next state reward and termination
info s′, r, t. Update this sequence of history tau and append
{s, a, r, s′, t, z} to replay buffer. Then every update frequency
of each networks, selecting sequences from replay-buffer, we
update network’s weights following loss below. Structure of
this algorithm is shown in Fig. 1.

• Policy Loss Policy Loss uses Q value loss with n-
step TD Learning. Loss follows average of total m, n-
step TD losses sampled from replay buffer. With given
{s, a, r, s′, z, t} sample, we estimate future trajectories

3

Environment

𝑧

(𝑠𝑡−𝑚, 𝑎𝑡−𝑚, 𝑟𝑡−𝑚)

(𝑠𝑡−1, 𝑎𝑡−1, 𝑟𝑡−1)

𝑧𝑡

𝑠𝑡

DQN 𝑎𝑡

Encoder

(𝑠𝑡+1, 𝑟𝑡)

Fig. 2. TIA Network quickly adjusting for unknown task

s′′, a′′, r′′, t′′, s′′′, a′′′, r′′′, t′′′, ... obtained by using model
predictor and using behavior policy as epsilon-greedy
from DQN network. By using this estimated future tra-
jectories inside n-step TD learning, we could obtain the
TD-error loss.

TD error =

n∑
i=1

γi−1r(i) + γiQ(s(n), a(n))−Q(s, a)

(1)

Lpolicy =
1

number of sample

∑
sample

TD error2 (2)

• Predictor Loss For predictor’s loss, from sampled
{s, a, r, s′, z, t}, we use input of state, action and latent
representation s, a, z to estimate reward, next state and
termination info r, s′, t. Loss function is simply calculated
as

Lpredictor =MSE(r, s′, t|µ(s, a, z)) (3)

• Encoder Loss For encoder/decorder’s loss, we use to
regenerate history sequence tau in to form of vertor z,
and reconstruct it back to original sequence tau. SO the
loss would be simple as below

Lseq2seq =MSE(tau|ψ(tau)) (4)

The overall architecture’s algorithm is shown in Pseudo
Algorithm 1 is in Appendix A.

C. Real-World Deployment

Once the TIA network has been sufficiently trained, it
can be deployed in real-world scenarios. For new tasks, the
agent rapidly adapts to the environment by using the encoder
network to generate an appropriate latent task representation z.
The policy network then uses this task representation to make
decisions, while the Model Predictor helps the agent anticipate
the consequences of its actions, thus enabling efficient and
robust performance across a wide variety of tasks. Figure
representation of deployment is shown at Fig 2.

IV. EXPERIMENTAL SETUP

The environment used for experimentation is a variation of
CartPole-v0 from openAI gym [12]. The task chosen was for
the CartPole to stay at a desired position (at the peak for
convenience) in some range. We deploy it for six simultaneous
CartPoles. The main reward for the agent was based on the
desired position. We deployed two reward distributions, (5)
and (6), for Experiment 1 and 2 respectively.

r = 1− a · int(|b(x− xd)|) (5)

y = e−
(x−xd)2

2σ2 (6)

Where each reward gives maximum 1 at desired cart po-
sition. Different ranges for the displacement were tried. The
wider the range was, there was more variance in the episodic
rewards which was due to the random initialization of the
desired positions within said range. The respective reward
function used in training (tuned hyper-parameters) is shown
in Fig 3

Fig. 3. 2 kind of reward used each for experiment 1 and 2

V. RESULT

A. Experiment 1

The reward function used is Fig 3 using equation (5). The
distribution of rewards itself has a large variance, specially
at the limits, making the tracking poor. The gamma was 1
and there wasn’t termination when trying to stay at a desired
position. This set-up wasn’t learning properly and didn’t meet
the expected results. When deployed, the tests with negative
initial desired positions produced more promising maximum
rewards while the ones starting at positive initial desired
positions weren’t as good.

In Fig 4 we see the tracking of the actual position against
the desired position of the Cart Pole. Initially the position
oscillates but around 600 it converges to the desired position
(-1) but eventually overshoots. Then, we conclude Experiment
1 didn’t achieve the desired task efficiently.

B. Experiment 2

The initial reward distribution (5) didn’t allow the agent to
train properly when the initial desired positions where positive.
To alleviate that, we used a Gaussian Distribution since it can
model most random distributions at infinite (6). We found the
most optimal performance at xd = 0 and σ = 0.7 as hyper-
parameters reflected in Fig 3

4

Fig. 4. Position Tracking performance used in Experiment 1. Orange line
indicates desired position where blue line was real cartpole position

Fig. 5. PPosition Tracking performance used in Experiment 2. Orange line
indicates desired position where blue line was real cartpole position

In the first iterations the Cart Pole doesn’t converge com-
pletely to the desired position. Eventually, after about 100
episodes, the agent performs better tracking shown in Fig 5.

VI. CONCLUSION

We propose the Task Invariant Agent (TIA) network, a
multi-task reinforcement learning approach. The TIA network
consists of three main components: a Policy Network, an
Encoder, and a Model Predictor. The Policy Network is a
modified version of DQN that takes both the state and a latent
task representation as inputs to select actions. The Encoder
generates the latent representation of the task from sequences
of experiences. The Model Predictor estimates the next state,
reward, and termination information based on the previous
state, action, and task representation. The experimental setup
was for a Cart-Pole to stay at a desired position.

As found in results of experiments above, we could suc-
cessfully conclude that TIA network was able to adapt in
newly seen task when performed in similar tasks before.
Experiment we had done wasn’t broad enough to cover the
diversity we wanted from the first sight, which leaves several
potential improvements. Nevertheless, we could still observe
that sequence of state, action and reward could represent the
overall reward and dynamics of given environment and also
could be used to estimate the reward and dynamics of given
environment.

VII. APPENDIX

A. Appendix A : Pseudo Algorithm of TIA Network

Algorithm 1 TIA Network
1: Initialize τi ← empty list for 1 ≤ i ≤ N
2: while step ≤ total step do
3: select i randomly from 1 to N
4: ẑi ← µ(τi)
5: zi ← (1− α) · zi + α · ẑi
6: a← π(s, zi)
7: observe s′, r, t
8: store {s, a, r, s′, t, z} to Replay Buffer
9: append (s, a, r, t) to τi

10: ti ← ti + 1
11: step← step+ 1
12: if step ≡ 0(mod update epoch DQN) then
13: sample {s, a, r, s′, t, z} from Replay Buffer
14: update weight of π
15: end if
16: if step ≡ 0(mod update epoch Predictor) then
17: sample {s, a, r, s′, t, z} from Replay Buffer
18: update weight of µ
19: end if
20: if step ≡ 0(mod update epoch Encoder) then
21: update weight of ψ
22: end if
23: end while

REFERENCES

[1] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017.

[2] C. Devin, A. Gupta, T. Darrell, P. Abbeel, and S. Levine, “Learning
modular neural network policies for multi-task and multi-robot transfer,”
in 2017 IEEE International Conference on Robotics and Automation
(ICRA), 2017, pp. 2169–2176.

[3] R. Yang, H. Xu, Y. WU, and X. Wang, “Multi-task reinforcement
learning with soft modularization,” in Advances in Neural Information
Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan,
and H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020, pp. 4767–4777.

[4] D. Ha and J. Schmidhuber, “World models,” 2018.
[5] L. Zhang, G. Yang, and B. C. Stadie, “World model as a graph: Learning

latent landmarks for planning,” 2021.
[6] A. Kumar, Z. Fu, D. Pathak, and J. Malik, “Rma: Rapid motor adaptation

for legged robots,” 2021.
[7] T. D. Kulkarni, K. R. Narasimhan, A. Saeedi, and J. B. Tenenbaum, “Hi-

erarchical deep reinforcement learning: Integrating temporal abstraction
and intrinsic motivation,” 2016.

[8] C. M. Bishop, “Mixture density networks,” 1994. [Online]. Available:
https://publications.aston.ac.uk/id/eprint/373/

[9] I. Lenz, R. A. Knepper, and A. Saxena, “Deepmpc: Learning deep
latent features for model predictive control.” in Robotics: Science and
Systems, L. E. Kavraki, D. Hsu, and J. Buchli, Eds., 2015. [Online].
Available: http://dblp.uni-trier.de/db/conf/rss/rss2015.htmlLenzKS15

[10] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” 2014.

[11] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” 2013.

[12] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” 2016.

