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Abstract—The use of parallel elastic actuators provides ad-
ditional torques in bipedal robots. However due to existing
constraints like available power or joint’s range of motion,
optimal actuators should be carefully designed. Existing solutions
involve modifying the actuator system and often rely on intuition,
making efficient testing challenging. In this work we introduce a
framework to systematically optimize actuator design of parallel
elastic actuators for bipedal robots. We design additional virtual
stiffness to joints and optimize its parameters based on a cost
function involving maximum torque and energy. We first train a
policy with model-free Reinforcement Learning using Potential
Based Rewards (PBRS) encouraging symmetry and adequate
torque consumption. From the time series data from the policy
roll out we find the optimal actuator parameters using Bayesian
Optimization. With this method we obtain optimal parameters to
design parallel elastic actuators that reduce the torques needed
for the 6-dof Bolt Robot. The optimal actuators are tested under
various criteria. The experiments show that we can increase the
maximum forward velocity of the robot by 19% compared to
our baseline while encouraging velocity and torque tracking.

I. INTRODUCTION

In recent years bipedal robots has revolutionized the field
of robotics but it still faces challenges when it comes to
energy consumption. To this end, researchers have utilized
used Reinforcement Learning (RL) methods to learn bipedal
locomotion policies while considering energy expenditure as
a key objective. One of the early researches [1] showed that
energy minimization plays a crucial role to achieve natural
gait patterns in quadrupedal legged robot. The approach used a
distillation-based learning pipeline with a velocity-conditioned
policy and rewards penalizing energy. Another approach [2]
used evolving policy parameterization and passive compliance
to find optimal CoM trajectories and minimize energy con-
sumption in the COMAN Robot.

However, the various physical interactions of legged robots
with the environment rather calls for actuator designs that aim
to maximize torque, bandwidth, and power while minimizing
losses from friction, inertia, and mass [3]. Implementing
powerful actuators has shown great promise for legged robots
as they provide additional torques [4]. A promising technique
is the incorporation of Parallel Elastic Actuators (PEA), where
the spring and actuator are in parallel, in the robot’s leg design.
These elements act as passive mechanical springs, storing and
releasing energy during locomotion. The robot STEPPR [5], a
bipedal robot using parallel-springs at the ankle and hip is a
notable example. By effectively recycling energy, the parallel

elastic elements reduced the overall energy expenditure in 13%
required for walking, leading to improved energy efficiency
and extended operation times. Some researchers [6] took this
approach further and designed serial-parallel hybrid legs for
humanoid robot reducing required torques. These previous
works indeed help reducing leg inertia and encourage uniform
gait but they require making various assumptions to simplify
the control theory and meet physical constraints [7] calling for
formal algorithmic methods to optimize actuator design.

As traditional methods used intuition, design optimization
techniques have been developed. Bauer et. al. [8] proposed
numerical optimization of elastic couplings and joint angle
trajectories to minimize average energy consumption. Using
linear torsion springs they increased energy efficiency by 50%.
However this method is not suitable for more complex bipedal
robots as it depends on the reference trajectory of two rigid
kneeless legs.

More recent methods [9] introduced using a hardware policy
along with a control policy in model-free RL to obtain opti-
mized weights and define hardware parameters. It remains yet
a challenge to incorporate mechanism kinematics and complex
morphologies as computational graphs, specially for legged
locomotion. A similar approach was proposed by Bjelonic et.
al. [10] co-optimizing the design and controller in the ANYmal
[11] quadrupedal robot. They use privileged learning [12] and
Heteroscedastic Evolutionary Bayesian Optimisation (HEBO)
algorithm [13] to optimize an objective function (tracking
performance) as black-box optimization since these physical
quantities aren’t usually differentiable by design parameters.

Although they implemented parallel linear springs in the
knee of the robot using RL-based control and surrogate mod-
els, it could be inaccurate to model the workspace of the knee
joint with cable-spring mechanisms [10]. One major challenge
still remains, to find optimization approaches generalizable to
all joints of bipedal robots, enabling them to generate higher
torques with less dependency for external power supply.

Therefore in this work we propose an optimization frame-
work to find optimal parameters to design parallel elastic
actuators (PEA) for weak actuation of bipedal robots. Our
approach was tested under various criteria: Cost of transporta-
tion, Maximum Achievable velocity and tracking analysis. The
major contributions of the proposed systematic approach for
PEA design of legged robots are as follows:

• Optimizing the design parameters of Parallel Elastic



Actuators for all joints of a Legged Robot using model-
free RL and Bayesian Optimization.

• An approach to obtain a locomotion control policy that
consumes less motor power.

• Experimental results in simulation demonstrating the in-
fluence of the optimal actuators and added masses on the
robot’s motion.

II. PRELIMINARIES

A. Reinforcement Learning

To model the locomotion control problem, we use a policy
π in model-free RL, building on Markov Decision Processes
(MDP) [14]. In our 6-dof biepdal robot the policy π has an
input of xt ∈ R33 and previous action at−1 ∈ R6, as each
robot leg has three joints each. They are used of predict the
current action at using Equation (1) and receive a reward rt.
The action at can be interpreted as positions per joint given
to a PD controller or directly scaled as torques.

at = π(x, at−1) (1)

RL methods aim to obtain an optimal policy π∗ that can
maximize the accumulated rewards discounted every time step
from (2) using xt and at−1 to obtain at.

V = Eτ∼p(τ |π)

[
T−1∑
t=0

γtrt

]
(2)

This iterative interaction with the environment yields τ =
{(x0, a0, r0), (x1, a1, r1), . . .} as the agent trajectory when
using the locomotion policy π and transition probability den-
sity p(τ |π) for a given discount factor γ. Current methods
parallelize this approach for thousands of robots [15] [16]
[17] using Proximal Policy Optimization (PPO) [18] for policy
optimization .

B. Bayesian Optimization with Gaussian Processes

Bayesian optimization (BO) [19] minimizes an unknown
function f : X → R within a limited budget of N function
evaluations on a compact subset X ⊂ Rd.

It employs a Gaussian process surrogate model
GP(x|µ, σ2, θ) with hyperparameters θ estimated using
Markov Chain Monte Carlo (MCMC) from m samples
Θ = {θi}mi=1.

Given dataset X = {x1:n} and outcomes y = {y1:n} at
step n, the model predicts a new query point xq with i-th hy-
perparameter sample θi as yq ∼ 1

m

∑m
i=1N (µi, σ

2
i |xq) [20].

Being ki(xq, X) the corresponding cross-correlation vector of
the query point xq with respect to the dataset X , the prediction
involves:

µi(xq) = ki(xq, X)Ki(X,X)−1y (3)

σ2
i (xq) = ki(xq, xq)− ki(xq, X)Ki(X,X)−1ki(X,xq) (4)

The decision process starts with an initial design of p
points via Latin Hypercube Sampling (LHS) to mitigate bias.
Subsequent points are chosen using the expected improvement

criterion: EI(x) =
∑m

i=1[(ρ − µi(x))Φ(zi) + σi(x)ϕ(zi)],
where ρ = ybest. At iteration n, the next query point xn is
selected as xn = argmaxXEI(x).

III. METHOD

A locomotion policy is first learned using model-free
RL and Potential Based Rewards to obtain time series
data (joint position, joint velocity, joint torques). Then,
we design a cost function which includes the maximum
torque generated and energy. Using the obtained data
and a cost function we find optimal parameters (stiffness
and initial joint angle) through Bayesian Optimization
for PEAs in all joints. Since the legs of a bipedal robot
has 3 joints, 3 stiffness parameters k and 3 initial joint
positions q0 should be considered. Thus, the vector θ∗ =
[k∗Hip Roll, k

∗
Hip Pitch, k

∗
Knee Pitch, q

∗
0Hip Roll, q

∗
0Hip Pitch, q

∗
0Knee Pitch]

T ∈
R6 represents the design space. The overall methodology is
illustrated in Figure 1.

A. RL-Based Control

We trained our policy using a Deep RL framework [17],
to train multiple environments simultaneously, and Potential
Based Rewards (PBRS) [21] for robust humanoid locomotion,
ease learning and encourage faster convergence to optimal
solutions. The reward function includes metric to follow the
linear base commands in x, y directions and rotational motion.
We also punished torque sum to encourage realistic torque
consumption for the robot with limited available torque or not.
Similarly, to penalize unsymmetrical motions, we penalize the
difference in joint position from hip roll and hip pitch using
a helper squared exponential function as shown in (5) .

Rsymmetry =
1

2 ∗ noise scale
× (exp ((q1 − q4) + (q2 − q5))) (5)

The commands were x, y linear velocities and yaw while
joint torques were the actions. The observations were position
and velocity for base and joints, commands, contacts, and
projected gravity for a total of size of 33 with their respective
scales and no noise. All the training was done in simulation
using 4096 environments for 1000 policy iterations and 100
Hz of control frequency. The simulator used was NVIDIA’s
Isaac Gym simulation environment which trains thousands of
robots simultaneously using curriculum learning and Proximal
Policy Optimization (PPO).

B. Design Objective

The goal of our approach is to find θ∗ ∈ R6, the design
parameters for PEAs at joints, so that overall energy con-
sumption of the bipedal robot is reduced. We roll out the
designed locomotion policy in a flat terrain environment and
no PEA added as baseline. Using the data from the simulation
we utilize it in the cost function J (6) for later Bayesian
Optimization. Since our main goal is to reduce the overall
torque the joints need to produce, we define J as the sum of
maximum torque produced and energy.



Fig. 1: Overview of the proposed design optimization approach. We first train a control policy using Model-Free RL to sample position,
velocity, and torque of the robot. Then we perform Bayesian Optimization for a defined cost function and design space.

J = |τmax|+ α
∑
t

(τT q̇) (6)

Since the Torque distribution from the RL policy roll-out
has disturbances, |τmax| is the result of stochastic clipping the
torque data. By doing so, we remove outliers and evaluate the
maximum torque generated from our policy more accurately.
Meanwhile, the energy term in J is the summation over all
time steps t of the product of joint torque τ and joint velocity q̇
from the policy roll-out. Because at heavier weights the joints
are bound to produce higher powers we add a regularization
term α towards prioritizing the effect of maximum torque
generated when optimizing the cost.

On another hand, simulating the overall energy is difficult as
there are various source of energy consumption like mechani-
cal energy of actuators as well as transmission and electronics
losses [10]. In this work we assume that the total energy of
the robotic system can be estimated from the joule heating of
individual actuators.

C. Optimization
With the defined cost function J we can find the optimal

parameters θ∗ ∈ R6 for a specific task. The defined task was
standard bipedal walking with appropriate velocity tracking.
As our objective can’t be directly differentiated by design
parameters θ due to the discrete changes of foot contact
during walking, we use Bayesian Optimization with Gaussian
Processes as it uses a surrogate model and is gradient-free.
The formalized optimal design parameters for PEA would be:

θ∗ = argminEθ∈R6 [J(θ, π)] (7)

Because we also aim for symmetry and naturalness of
locomotion, that is directly enforced it by constraining the
optimization variables. Namely, considering all joints for the
bipedal robot from the design space we establish the following:

Hip Roll: k1 = k4, q01 = −q04 (8)

Hip Pitch: k2 = k5, q02 = q05 (9)

Knee Pitch: k3 = k6, q03 = q06 (10)

IV. EXPERIMENTS

In this section we implement the PBRS rewards, obtain the
optimal design parameters (stiffness and initial joint angle)
from the policy roll-out and then test the optimized designs in
motion under various metrics.

A. Control Policy

The results using the joint regularization reward from Equa-
tion 5, generate a more stable gait compared to traditional
tracking penalties as shown in Fig. 2. The forward velocity
(x direction) and the yaw velocity in the base of the robot
both converges to the commanded velocity after 0.3 time step.
Meanwhile, the sideways velocity converges faster, before
0.25s. However, all of the above measure velocities don’t
actually match the commanded values. Similarly, the torques



(a) Base Velocity x

(b) Base Velocity y

(c) Base Velocity yaw

Fig. 2: Baseline Velocities

Fig. 3: Baseline Torque

also don’t follow a uniform behaviour as seen in Figure 2 with
a maximum achievable torque of 0.6.

On the other side when implementing the potential based
rewards for forward motion we see more consistent overall
results. As seen in Figure 4, the robot fully converges to the
commanded velocity after 1s. Although it took more than the
baseline, the measure velocity is more consistent as clearly
seen for Base Velocity y of Fig. 4. It takes time to reach the
forward and sideways commanded velocities but for the yaw
it happens instantaneously. This is because the potential based
rewards in theory do encourage faster convergence compared
to standard velocity/torque tracking rewards, specially if joint
regularization is used. Moreover, as seen in Fig. 5 the new

mean measured torque has a peak over 1 Nm if positive and
well over 1.5 if negative, both bigger than the baseline torques.

(a) Base Velocity x

(b) Base Velocity y

(c) Base Velocity yaw

Fig. 4: PBRS Velocities

Fig. 5: PBRS Torque

B. Optimal Parameters

With better tracking from to PBRS rewards, we roll-out the
policy and obtain optimal parameters θ∗ ∈ R6 for the robot
using our Cost Function from Equation 6 constrained by 9, 8,
10 and Bayesian Optimization. Because PEAs are expected to
provide additional torque, we obtain the policy data from the
roll-outs of when the mas of the base increases by 1kg, 2kg
and 3kg.

Using our Cost Function we can build a 20x20 grid ac-
cording to k and q values. We compare our method with a



grid search that finds the k and q combinations that most
reduce the torques the joints need to produce. In Figure 6
we show the cost maps and compare the optimal parameters
from our Bayesian Optimization approach and the grid search
when we increase the base mass by 3kg. We see that our
method successfully avoids sub-optimal combinations in the
same number of observations as of the grid search (400 data
points). That is because Bayesian Optimization can rely on
past observations to make informed decisions and choose the
best next Optimization Point [19].

(a) Hip Roll Cost Map

(b) Hip Pitch Cost Map

(c) Knee Pitch Cost Map

Fig. 6: Cost maps for Robot with extra 3kg of Base Mass. Op-
timal design parameters from Bayesian Optimization (Green
Points) and Grid Search (Red Points) are shown.

Table 1 shows the optimal parameters obtained from our
method for various added base masses. Using these optimal
configurations for PEA we have new actions (torques) and can
establish and new control type ”S” as seen in Algorithm 1.

Algorithm 1 Compute Torques

Input: actions
Output: joint torques
Initialize actions scaled← actions× action scale
Initialize control type← control type
if control type is ”P” then

torques← kp× (actions scaled+ qdefault− q)− kd× q̇
else if control type is ”V” then

torques← kp×(actions scaled− q̇)−kd×(q̇− q̇t−1)/t
else if control type is ”T” then
torques← actions scaled

else if control type is ”S” then
Set q0 ← q∗0
Set k ← k∗

spring torque← (k × (actions− q0))
torques← actions scaled+ spring torque
break

end if=0

C. Curriculum Learning

We now can consider this new spring torque to the policy’s
actions under curriculum learning. In 10 000 iterations of
training, the baseline policy (no added mass) converged to
2.5083 m/s while our new policy converged to 2.9876 m/s.
This is a increase of 19.11% in forward velocity. The number
of iterations was cut at 10 000 iterations since past this point
the velocity didn’t significantly change.

D. Cost of Transportation

To test the performance of the approach we compared the
Cost of Transportation (COT) defined as the total power over
an interval of time while the positive COT refers to considering
only the positive powers produced by the total sum of power
from joints [22].

COT =
∆W

mg∆x
=

1

mg∆x

∑
j∈r,l

∫ tend

t0

(
Fa,j(t)ḣj(t)

)
dt (11)

COTpositive =
1

mg∆x

∑
j∈r,l

∫ tend

t0

max
(
Fa,j(t)ḣj(t), 0

)
dt (12)

In Equation 11 , ∆W is the total power in a time interval,
m is the robot mass, g is the acceleration due to gravity, ∆x is
the displacement, Fa,j(t) represents the force of each actuator,
and ḣj(t) denotes the velocity of displacement for each unit
of space. Equation 12 depicts the COT formula, modified to
consider only positive power values.

We run the policy on 50 parallel robots and averaged the
COT and positive COT at various velocities. From Fig. 6 and
Figure 7. it is clear that the new policy with PBRS rewards
and the found optimal PEAs lead to higher COT at lower
masses until the turning point, at 1kg for regular COT and
at 2kg for Positive COT. After said turning points our policy
leads to lower COT, the residual torque that the motor needs to
produce is smaller with our method. That is because the robot



TABLE I: Optimal PEA Parameters

Extra Mass Hip Roll Hip Pitch Knee Pitch

k∗ q∗0 k∗ q∗0 k∗ q∗0

1 -0.3729 0.1313 -1.7645 0.4433 -1.7502 -0.3176
2 -0.0253 0.0384 -0.1025 -0.3300 -1.2504 -1.5699
3 -0.0527 -1.4561 -0.0587 0.9092 -1.8602 -1.5700

Fig. 7: Cost of Transportation

Fig. 8: Positive Cost of Transportation

can rely on the designed springs to bounce and encourage
forward motion which otherwise is an additional effort at slow
speeds.

V. CONCLUSION

In this work, we proposed an approach to find optimal
parameters for Parallel Elastic Actuators (PEA) in Legged
Robots. To generalize our approach over the various joints
(Hip Pitch, Hip Roll, Knee Pitch) we designed a Policy using
Potential Based Rewards. We then use the time series data
from the roll-out of the policy to design a cost function relating
maximum torque and energy consumption. Additionally, to
evaluate performance we compared our new policy using
curriculum learning for max forward velocity and compared
the cost of transportation.

We also provide considerations in why Potential Based
Rewards encourage velocity convergence. Using this new
control applying joint stiffness Bolt Robot successfully could
move move forwards faster and reduce its energy consumption
at high speeds. Thus we can confirm that the effect of PEA is
nontrivial since the actuators s have to repeatedly work against
the spring [10]. Future works can use sample trajectories from
model based methods or include vision to model the gait

of Bolt when facing an obstacle and still make full use of
virtual joints in various directions. Lastly, our method limited
to consider joint stiffness and initial joint position in an offline
fashion. It would be more ideal to consider other design
parameters for different joints to see their effects as well as
carrying out this optimization using Genetic Algorithm or as
a Model Predictor as part of the Policy Network.
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